Three-dimensional microtissue assay for high-throughput cytotoxicity of nanoparticles.

نویسندگان

  • Yang Luo
  • Chaoming Wang
  • Mainul Hossain
  • Yong Qiao
  • Liyuan Ma
  • Jincui An
  • Ming Su
چکیده

Traditional in vitro nanotoxicity researches are conducted on cultured two-dimensional (2D) monolayer cells and thereby cannot reflect organism response to nanoparticle toxicities at tissue levels. This paper describes a new, high-throughput approach to test in vitro nanotoxicity in three-dimensional (3D) microtissue array, where microtissues are formed by seeding cells in nonsticky microwells, and cells are allowed to aggregate and grow into microtissues with defined size and shape. Nanoparticles attach and diffuse into microtissues gradually, causing radial cytotoxicity among cells, with more cells being killed on the outer layers of the microtissue than inside. Three classical toxicity assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT), glucose-6-phosphate dehydrogenase (G6DP), and calcein AM and ethidium homodimer (calcein AM/EthD-1)] have been adopted to verify the feasibility of the proposed approach. Results show that the nanotoxicities derived from this method are significantly lower than that from traditional 2D cultured monolayer cells (p < 0.05). Equipped with a microplate reader or a microscope, the nanotoxicity assay could be completed automatically without transferring the microtissue, ensuring the reliability of toxicity assay. The proposed approach provides a new strategy for high-throughput, simple, and accurate evaluation of nanoparticle toxicities by combining 3D microtissue array with a panel of classical toxicity assays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves

Objective(s): For the development of reliable, ecofriendly, less expensive process for the synthesis of silver nanoparticles and to evaluate the bactericidal, and cytotoxicity properties of silver nanoparticles synthesized from root extract of Croton bonplandianum, Baill. Materials and Methods: The synthesis of silver nanoparticles by plant part of Croton bonplandianum was carried out.  The for...

متن کامل

Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes

Due to their excellent physical and chemical characteristics, multi-wall carbon nanotubes (MWCNT) have the potential to be used in structural composites, conductive materials, sensors, drug delivery and medical imaging. However, because of their small-size and light-weight, the applications of MWCNT also raise health concerns. In vivo animal studies have shown that MWCNT cause biomechanical and...

متن کامل

Cytotoxicity and Apoptotic Effect of Chitosan Nanoparticles Containing Hydroalcoholic Extract of Physalis alkekengi on HT29 Cell Line

Background and purpose: In this study, we aimed to evaluate the anticancer activity of Physalis alkekengi extract encapsulated into chitosan nanoparticles on HT29 cell line. Materials and methods: The fruits of the P.alkekengi were collected from Kohgiluyeh Boyerahmad province in south-west of Iran and dried in a dark environment. Then, the hydroalcoholic extract of the plant was extracted by ...

متن کامل

Cytotoxicity of ICD-85 NPs on Human Cervical Carcinoma HeLa Cells through Caspase-8 Mediated Pathway

The biological application of nanoparticles (NPs) is a rapidly developing area of nanotechnology that raises new possibilities in the treatment of human cancers. The cytotoxicity was evaluated by MTT and LDH assays. The apoptotic effect of free ICD-85 and ICD-85 NPs on HeLa cells was assessed using caspase-8 colorimetric assay. The MTT assay showed that ICD-85 NPs could enhance the in-vitro cyt...

متن کامل

Cytotoxicity of ICD-85 NPs on Human Cervical Carcinoma HeLa Cells through Caspase-8 Mediated Pathway

The biological application of nanoparticles (NPs) is a rapidly developing area of nanotechnology that raises new possibilities in the treatment of human cancers. The cytotoxicity was evaluated by MTT and LDH assays. The apoptotic effect of free ICD-85 and ICD-85 NPs on HeLa cells was assessed using caspase-8 colorimetric assay. The MTT assay showed that ICD-85 NPs could enhance the in-vitro cyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 84 15  شماره 

صفحات  -

تاریخ انتشار 2012